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Materials and Methods 
Rodent malaria transmission 

Atovaquone resistant mutants are as previously described(14, 15).  All animal 
experiments were in accordance with the Australian Prevention of Cruelty to Animals Act 1986 
and the Prevention of Cruelty to Animals Regulations 2008 and reviewed and permitted by the 
Melbourne University Animal Ethics Committee (Ethics ID: 0810992.4 and 1112043.1) and 
Jichi Medical School (Ethics ID: 18-205).  Four-week-old male Swiss Webster mice (Monash 
Animal Research Platform, Melbourne, Australia) were infected by intravenous injection of 
1x105 infected red blood cells. 1 µl of tail prick blood was mixed with 100 µl of exflagellation 
media (RPMI [Invitrogen] supplemented with 10% foetal bovine serum, pH 8.4), incubated for 
15 min, and exflagellation events per 1x104 red blood cells were counted. An. stephensi (MR4) 
mosquitoes were allowed to feed on anaesthetised mice once the exflagellation rate was between 
2-10 events per 104 red blood cells.  Twenty-two hours after biting, mosquito midguts were 
dissected and the blood meal isolated, stained with Giemsa, and ookinetes were counted.  
Twelve days after biting, mosquito midguts were dissected and visually checked for the presence 
of oocysts. At least ten mosquito midgut contents were examined from 3-6 separate feeding 
experiments for each line. Twenty-two days after biting, salivary glands were dissected and 
checked for the presence of sporozoites. Finally, these mosquitoes were used in bite back 
experiments with naïve mice.  Transmission (number of days till blood stage malaria patency 
was observed) was checked by daily tail prick and blood smearing for 12 days after biting. Blood 
samples were taken from mice and genomic DNA was extracted using the NucleoSpin blood kit 
(Machery & Nagel) for PCR amplification (3700a – TGGATGGTGCTTTAGATATATGC, 
4615 – GTTTGCTTGGGAGCTGTAATC) and sequence genotyping (4086 – 
CCTTTAGGGTATGATACAGC, 4103 – TGATGTATCATACCCTAAAG) of cytB. 
Oocyst microscopy 

Dissected mosquito midguts were fixed in 2.5% glutaraldehyde in PBS, and 
then in 0.5%OsO4, dehydrated in an ethanol series, embedded in London Resin White, and 
semi-thin sections (400nm) mounted on glass slides and stained with 0.5% toluidine blue 
(w/v): 0.1% Na2CO3 (w/v) for 10 seconds, and then imaged on an Olympus BH-2 light 
microscope. 
Gametocyte activation assays 

Mosquitoes were fed with atovaquone resistant and parental lines and 
midguts were dissected at 20 hours post infection and homogenized in PBS, and then a 
fraction of the homogenate was smeared on a slide and stained with either anti-Pbs21 
antibody(33) for rodent malaria parasites or anti-Pfs25 antibody(34) for human malaria 
parasites to identify activated gametocytes expressing the activated gametocyte protein on 
their surface.  The presence of unactivated female gametocytes was confirmed by RT-PCR 
as described(35). 
Rodent malaria crosses 

Donor mice were pre-infected with frozen stocks, and after 3 to 5 days, 2.5x105 
parasites of each line being crossed were injected intravenously into recipient mice. Blood 
samples were later taken from recipient mice for PCR confirmation of the appropriate dual 
infections. Mosquitoes were infected as above, and oocyst counts, sporozoite counts, 
transmission to naïve mice (passage zero/P0), and progeny genotyping were done as above.  
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Drug selection of human malaria parasites 
Gelatine selected P. falciparum (NF54e strain, Walter Reed National Military 

Medical Center, Bethesda) was grown in vitro (36) and exposed to increasing 
concentrations of atovaquone(16), beginning at 1nM and increasing twofold each time 
resistant parasites were observed. The parental line experienced the same number of 
passages without drug.  Gelatine selection was repeated before each increase in drug 
concentrations.  cytB genes were amplified by PCR (379SP – 
CTCTATTAATTTAGTTAAAGCACAC, 380ASP – ACAGAATAATCTCTAGCACC) 
and sequenced (381 – AGCAGTAATTTGGATATGTGGAGG, 382 – 
AA\TTTTTAATGCTGTATCATACCCT) from two lines able to grow at 8nM atovaquone 
to characterize possible resistance mutations.  Drug resistance was measured in vitro as 
described(37, 38). 
Transmission of human malaria to mosquitoes 

In vitro gametocyte cultures (PfNF54e, PfM133I and PfV259L) were diluted to 0.1% and 
0.3% gametocytaemia and fed to An. gambiae (Keele) mosquitoes(39) on artificial membrane 
feeders.  Fed mosquitoes were kept at 25 °C in a humidified chamber. Mosquito midguts were 
dissected seven days after feeding and oocyst number per mosquito was determined after 
staining with 0.2% Mercurochrome. 
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Extended Data Figure 1

 

Fig. S1. 
Progeny of outcrossing remain sensitive to atovaquone.  Atovaquone sensitivity in ex 
vivo assay of parental strains and the progeny of genetic crosses. Bars represent IC50 
concentrations with SEM.   Progeny of genetic crosses are not significantly different to 
each other or GFP control (one-way ANOVA, p>0.05).. 
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